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A closed system of governing equations for the dynamic and geometrical quantities in an 

inhomogeneous viscoelastic medium with initial stresses is constructed within the framework of the 

spatial linearized theory of elasticity [l] using the theory of fractures [2]. The geometrical characteristics 

of the wave front and the paths in an unbounded medium with initial stresses are obtained from the 

principle of the Fermat functional [3]. 

The propagation of waves was previously considered in [4,5] and a calculation was given of the intensity 

of the wave fronts in a linear inhomogeneous viscoelastic medium with a continuous change in the 

parameters of the medium which depend on the spatial coordinates without taking account of initial 

stresses. 

1. We will write the relationship between the stress and deformation tensors for an inhomogeneous 

viscoelastic medium in the form [6] 

where h, and pL1 are linear integral operators, the kernels of which depend continuously on the spatial 

coordinates 

k, =X(l+h), Ac =~A(/.xi) e(r-t’)dr’ 
0 

~1 =p(l+M). Me=iM(f’.Xi)e(t-t’)dt’ 
0 *a 

Relationships (1.1) and (1.2), together with the equations of motion written in a linearized form in 

Euler coordinates [l] 

and the Cauchy formulae 

2eii = ui,j + ujj (1.4) 

represent a closed system for describing the process of dynamic deformation of an inhomogeneous 
infinitely viscoelastic medium with initial stresses. 
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In formulae (1.2)-(1.4), p(x,), h(x,), p(x,) are functions of the spatial coordinates, oi, ai-c the 

components of the initial stress tensor, p is the density of the medium in the unb0unde.d. unstressed state 

and y are the components of the displacement vector. 

Here and henceforth, it is assumed that summation over repeated Latin indices is from one to three 

and, over repeated Greek indices, from one to two. 

The wave of a discontinuity in the stresses in an inhomogeneous viscoelastic system with initial stresses 
is determined by ‘the isolated surface Z(t), G(x,) in which the displacements and parameters of the 

medium are continuous while the stresses, the rates of displacement and the initial stresses undergo ;t 

discontinuity. 
When account is taken of the initial stresses, the dynamic relationships 

must be satisfied on the wave surface C(f). 

Here, v, are the components of the unit vector normal to c(t). G(xi) is the normal velocity of motion 
of the surface E(t) in the medium under consideration when account is taken of the initial stresses. 182 
denotes the discontinuity of the function f (f + is the value of the function on the front side and f- is the 
value of the function on the back side of the surface C(t)), where fm = 0 on account of the fact that the 
part of the medium which is adjacent to the back side of the surface X(t) is at rest and there are no 

deformations in it (an unloading wave, that is, in this case the expression in the square brackets reduces to 
the value of the quantity being considered on the front side of the surface). 

It follows from the rheological relationships (l.l), recorded at the discontinuities and the dynamic and 
kinematic conditions for first-order compatibility [2] 

[ui,j]=[ui]vj/G, [ui]=[al+lat] (1.0) 

that longitudinal and transverse waves exist in the medium being considered for which 

(p = &)Vi, (pvi = 0 (1.7) 

where w$‘) (I = p, t) are the components of a vector of amplitude (u, j. The local velocities of propagation 

of these waves are respectively 

c; =cj(l-q, c: =+nq (1 .X) 

A’, =[bE]ViVn I hp. .I: = [&]ViV, I A, 

h,=b+2t~, h,=p, pc;=AD. &=A, 

Here cP and c, are the velocities of the longitudinal and transverse waves in an inhomogeneous 
viscoelastic medium without initial stresses. 

On differentiating relationships (1.1) with respect to t and taking their difference on the different sides 

of the surface of discontinuity, we find 

(1.9) 

Let us write the equations of motion (1.3) in terms of the discontinuities 

(1.10) 

Taking account of the first-order compatibility conditions, the Cauchy formulae (1.4) and the condition 

[Ujni]=G3([Uj]BG/b-Gg[Uj]l~~-G2~j)ViV” (1.11) 
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we can write expressions (1.9) and (1.10) as follows: 

(1.12) 

The quantities Mij and Li are defined on the surface X(t) and characterize the jumps in the first 

derivatives of the stresses and the velocities of the displacements respectively, g”’ are the contravariant 
components of the first fundamental quadratic form, xi,s are the derivatives of the Cartesian coordinates 

xi with respect to the curvilinear coordinates y, of the surface (p = 1,2) and 6/6t-6 is the derivative with 
respect to time [2]. 

In order to eliminate the quantities Mii from Eqs (1.12), we multiply the first of them by v,, the second 

by G, add the results and then use the dynamical relationships (1.5). We obtain 

(1.13) 

The relationships 

have been taken into account in the derivation, where Q is the mean curvature of the wave surface and 
b,, are the coefficients of the second quadratic form of the surface C(t). 

On multiplying (1.1) by v,, summing over the repeated index and then taking account of the first 

formulae of (1.7) and (1.8), we obtain the differential equation for the longitudinal wave. For the 
transverse wave, for which or)vL =O, we transform relationship (1.13) taking account of the second 

formula of (1.8). On subsequently changing to the variable s 20, which denotes the distance along the 
normals to the surface I((,), we obtain the equations for the change in the amplitude of the longitudinal 
and transverse waves during their propagation 

(1.14) 

Equations (1.14) contain the geometric invariant R,, that is, the mean curvature of the wave front as 

the unknown function and, consequently, they are not closed. According to results which have been 

previously obtained [7, 81 and formulae (1.8), we obtain the equation for R, in the radial system of 
coordinates 

d”r/&32@-K,-JtJQ-h-4) 

Q =ci’gpJI(l-a~)-‘c~~. Q =g=h,(c,(l-q(~~,)~ (1.15) 
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where K, is the Gaussian curvature of the surface Z(t) which is determined from the equation 

We find the equations for the trajectory of a ray from the Fermat functional principle, taking account of 

relationships (1.8) 

The covariant and contravariant components of the first and second quadratic forms of the surface, 

taking into account the initial stresses, satisfy equations [2,8] 

For specified functions c,, h, and initial values o,, Q,, K,, b,$, b,“B, g& g: the system has a unique 
solution. On eliminating the Gaussian curvature K from Eqs (1.15) and (1.16), we obtain 

ii-6ti+4h3 =_-3n(~-(h-~1)+K(Q-~-R1)+~-5-R2 (h=dQlds) (1.17) 

On solving Eqs (1.16) and (1.17) by the method of successive approximations when n = 0, 1,2, . . . ? we 

obtain that the zeroth approximation corresponds to a homogeneous medium [2]. The solution of the 
equations of the first approximation with null initial conditions will be R (I) = K(l) = 0. The solutions of the 

equations for a(*) and I@” are quite complicated and we shall therefore consider the case when 
R, = K, = 0, that is, the wave is planar at the beginning. In this case fiz(‘) = K(O) = L$*) = K(l) = 0, and, in the 

second approximation, we obtain 

n=n(2)-f~(Q(s)-h(s)-%(s))~-~~2)(s)~ (1.18) 

K=K(‘)=-j(q(~)--q(s)-R2(~,)dc 
0 

Let us now determine the level of the amplitude w which satisfies Eq. (1.14). In order to do this, we 

select the magnitude of the gradient G, = ~,(l--h:)~ as the parameter which determines the order of the 
approximations. Then, &,/A is of the first order and xrU and x,,@ are of the second order. A homo- 

geneous medium corresponds to the zeroth order. In the fist approximation, account is taken of the rate 
of change of the inhomogeneity of a viscoelastic medium with initial stresses along a ray while, in the 
second approximation, account is taken of the rate of change of the inhomogeneity of a viscoelastic 

medium with initial stresses at right angles to the ray. 
On substituting w = co(‘) +o(‘) +. . . into (1.14) and solving it by the method of approximations, we 

obtain 

dco’o’ , & = &)(s)&), &,(” , & = Q(o)& + (Q(l) _ f”)“‘“’ 
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In the case of Eqs (1.19), we impose the initial conditions 

o(O)(O) = o$‘, &(O) =o (i = 1,2,...) (1.W 

The solution of Eqs (1.19), taking account of (1.20) and the fact that a(‘)(O)=0 can be written in the 

form 

(1.21) 

2 Let us now consider a layered viscoelastic medium with initial stresses which is characterized by 

elastic moduli h(x), u(x), density p(x), relaxation kernels A(0, x), M(0, x) and initial stresses ci. 
At the instant of time t = 0, delamination of the layers occurs in the y, z plane. The unloading wave 

propagates along the x-axis. From (1.18), the velocity of propagation of the wave will then have the form 

(2.1) 

Since g*=b,= 0 and when x = 0, Q, = K, = 0, we obtain from,Eqs (1.15) and (1.16) that a = K = 0, 

while, from Eq. (1.14), we find the dependence of the level of the intensity of the wave on the velocity, the 

relaxation kernels and the initial stresses 

where er’,’ is the value of the function &‘) when x = 0. 
On specifying the form of c,,(x), A(0, x ), M(0, x ) and [a:], in (2.2), we obtain the nature of the 

change in the level of the intensity of the wave in an inhomogeneous viscoelastic medium with initial 
stresses. 
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